Annex Q

Constants, Units, and Conversions

Metric Prefixes

Although most activity data for the U.S. is gathered in customary U.S. units, these units are converted into metric units per international reporting guidelines. The following table provides a guide for determining the magnitude of metric units.

Table Q-1: Guide to Metric Unit Prefixes

Prefix/Symbol	Factor
atto (a)	10 ⁻¹⁸
femto (f)	10 ⁻¹⁵
pico (p)	10 ⁻¹²
nano (n)	10 ⁻⁹
micro (µ)	10 ⁻⁶
milli (m)	10 ⁻³
centi (c)	10 ⁻²
deci (d)	10 ⁻¹
deca (da)	10
hecto (h)	10 ²
kilo (k)	10 ³
mega (M)	10 ⁶
giga (G)	10 ⁹
tera (T)	10 ¹²
peta (P)	10 ¹⁵
exa (E)	10 ¹⁸

Unit Conversions

```
1 kilogram =
                2.205 pounds
1 pound
                0.454
                kilograms
1 short ton =
                2,000 pounds
                                = 0.9072 metric
                                    tons
1 metric ton =
                1,000
                                = 1.1023 short tons
                kilograms
                 35.315 cubic feet
1 cubic
meter
1 cubic foot =
                 0.02832 cubic
                 meters
1 U.S. gallon = 3.785412 liters
1 barrel (bbl) = 0.159 cubic meters
1 barrel (bbl) = 42 U.S. gallons
1 liter
            = 0.1 cubic meters
```

1 foot 0.3048 meters 1 meter 3.28 feet 1 mile 1.609 kilometers

1 kilometer = 0.622 miles

0.4047 1 acre 4,047 square 43,560 square

feet hectares meters

2.589988 square 1 square mile kilometers

To convert degrees Fahrenheit to degrees Celsius, subtract 32 and multiply by 5/9 To convert degrees Celsius to Kelvin, add 273.15 to the number of Celsius degrees

Density Conversions¹

Methane 1 cubic 0.67606 meter kilograms Carbon 1 cubic 1.85387 dioxide meter kilograms

Natural gas liquids 1 metric ton = 11.6 1,844.2 liters barrels Unfinished oils 1 metric ton = 7.46 1,186.04 barrels liters

Alcohol 1 metric ton = 7.94 1,262.36 barrels liters

Liquefied petroleum 1 metric ton = 11.6 1,844.2 liters

barrels

Aviation gasoline 1 metric ton = 8.9 barrels 1,415.0 liters Naphtha jet fuel 1 metric ton 8.27 1,314.82

barrels liters Kerosene jet fuel 1 metric ton = 7.93 1,260.72 barrels liters

Motor gasoline 1 metric ton = 8.53 1,356.16 barrels liters

Kerosene 1 metric ton = 1,228.97 7.73 barrels liters

Naphtha 1 metric ton = 1,306.87 8.22 barrels liters

Distillate 1 metric ton = 7.46 1,186.04 barrels liters

Residual oil 1 metric ton = 6.66 1,058.85 barrels liters

Lubricants 1 metric ton 7.06 1,122.45 barrels liters

Bitumen 1 metric ton = 963.46 liters 6.06

barrels Waxes 1 metric ton 7.87

barrels liters Petroleum coke 1 metric ton 5.51 876.02 liters

1,251.23

barrels

Petrochemical 1 metric ton 7.46 1,186.04 feedstocks barrels liters

Special naphtha 1 metric ton 1,356.16 8.53 barrels liters

8.00 Miscellaneous products 1 metric ton 1,271.90 barrels liters

¹ Reference: EIA (1998a)

Energy Conversions

Converting Various Energy Units to Joules

The common energy unit used in international reports of greenhouse gas emissions is the joule. A joule is the energy required to push with a force of one Newton for one meter. A terajoule (TJ) is one trillion (10¹²) joules. A British thermal unit (Btu, the customary U.S. energy unit) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2 Fahrenheit.

1 TJ = 2.388×10¹¹ calories 23.88 metric tons of crude oil equivalent 947.8 million Btus 277,800 kilowatt-hours

Converting Various Physical Units to Energy Units

Data on the production and consumption of fuels are first gathered in physical units. These units must be converted to their energy equivalents. The values in the following table of conversion factors can be used as default factors, if local data are not available. See Appendix A of EIA's *Annual Energy Review 1997* (EIA 1998) for more detailed information on the energy content of various fuels.

Table Q-2: Conversion Factors to Energy Units (Heat Equivalents)

Fuel Type (Units)	Factor
Solid Fuels (Million Btu/Short	
ton)	
Anthracite coal	22.573
Bituminous coal	23.89
Sub-bituminous coal	17.14
Lignite	12.866
Coke	24.8
Natural Gas (Btu/Cubic foot)	1,027
Liquid Fuels (Million	
Btu/Barrel)	
Crude oil	5.800
Natural gas liquids and	3.777
LRGs	
Other liquids	5.825
Motor gasoline	5.253
Aviation gasoline	5.048
Kerosene	5.670
Jet fuel, kerosene-type	5.670
Distillate fuel	5.825
Residual oil	6.287
Naphtha for	5.248
petrochemicals	0.004
Petroleum coke	6.024
Other oil for	5.825
petrochemicals	5.040
Special naphthas	5.248
Lubricants	6.065
Waxes	5.537
Asphalt	6.636

Still gas	6.000
Misc. products	5.796

Note: For petroleum and natural gas, *Annual Energy Review 1997* (EIA 1998b). For coal ranks, *State Energy Data Report 1992* (EIA 1993). All values are given in higher heating values (gross calorific values).

References

- EIA (1998a) Emissions of Greenhouse Gases in the United States, DOE/EIA-0573(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. October.
- EIA (1998b) Annual Energy Review, DOE/EIA-0384(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. July.
- EIA (1993) State Energy Data Report 1992, DOE/EIA-0214(93), Energy Information Administration, U.S. Department of Energy. Washington, DC. December.